12. Forming proportions from equations. Since proportions are algebraic equations, they may be rearranged in accordance with the laws of algebra. For example, if

x = 
ab
——
c
, (1)
we may write the proportion
x
1
 = 
ab
——
c
, (2)

or we may divide both sides by a to get

x
a
 = 
ab
——
ac
 ,   or
x
——
a
 = 
b
c
, (3)

or we may multiply both sides by c/x to obtain

cx
——
x
 = 
cab
———
xc
 ,   or
c
——
1
 = 
ab
——
x
. (4)

Rule (A). A number may be divided by 1 to form a ratio. This was done in obtaining proportion (2).

Rule (B). A factor of the numerator of either ratio of a proportion may be replaced by 1 and written as a factor of the denominator of the other ratio, and a factor of the denominator of either ratio may be replaced by 1 and written as a factor of the numerator of the other ratio. Thus (3) could have been obtained from (1) by transferring a from the numerator of the right hand ratio to the denominator of the left hand ratio.
For example, to find
16 × 28
——————
35
 ,    write x =  
16 × 28
——————
35
, apply Rule (B) to obtain
C
D
:       
x
——
16
 = 
28
———
35
  ,
and
                              push hairline to 35 on D,
                              draw 28 of C under the hairline;
                              opposite 16 on D, read x = 12.8 on C.

Figure 3 indicates the setting.


FIG. 3.


To recall the rule for dividing a given number M  by a second given number N,

write x =
M
——
N
, apply Rule (A) to obtain
D
——
C
:     
x
——
1
 = 
M
——
N
 , 

and
                              push hairline to M on D,
                              draw N of C under the hairline;
                              opposite index of C, read x on D.

To recall the rule for multiplication, set x =
MN
———
1
, apply Rule (B) to obtain
D
C
:       
x
——
M
 = 
N
———
1
  ,
and
                              to N on D set index of C;
                              opposite M on C, read x on D.

To find x if
1
———
x
 = 
864
—————————
(7.48) (25.5)
, use Rule (B) to get
7.48
———
x
 = 
864
———
25.5
, make the corresponding setting and
read x = 0.221. The position of the decimal point was determined by observing that x must be about 1/40 of 8, or 0.2.

EXERCISES

Find in each case the value of the unknown quantity.

1.   y  =  
8 × 12
—————
7
.
  8.   498  =  
89.3x
—————
0.5631
.
2.   7.4  =  
9y
——
28
.
  9.   0.874  =  
3.95 × 0.707
——————————
x
.
3.   8y  =   75.6 × 9    .
10.   0.695  =  
0.0879
——————
x
.
4.   y  =  
86 × 70.8
———————
125
.
11. 
1
———
386
 =  
0.772
————
2.85y
.
5.   y  =  
147.5 × 8.76
——————————
3260
.
12.   2580y  =  17.9 × 587 .
6.   y  =  
0.797 × 5.96
——————————
0.502
.
13.   3.14y  =  0.785 × 38.7 .
7. 
37 × 86
———————
y
  =   75.7 .
14. 
0.876y
—————
5.49
 =  7.59 .